Part Number Hot Search : 
BR2500W 12F50 SMCJ11 30490 FAN400A2 AN1516 MC9S12DG TS208R
Product Description
Full Text Search
 

To Download IRFB7446PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  09/11/12 www.irf.com 1 hexfet   power mosfet benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free gds gate drain source 
fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature applications  brushed motor drive applications  bldc motor drive applications  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters  dc/ac inverters ordering information form quantity IRFB7446PBF to-220 tube 50 IRFB7446PBF base part number package type standard pack complete part number 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0 2 4 6 8 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 70a t j = 25c t j = 125c d s g   

 to-220ab IRFB7446PBF s d g d 25 50 75 100 125 150 175 t c , case temperature (c) 0 25 50 75 100 125 i d , d r a i n c u r r e n t ( a ) v dss 40v r ds(on) typ. 2.6m max. 3.3m i d (silicon limited) 123a i d (package limited) 120a

 2 www.irf.com absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  e as (tested) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r  ??? 1.52 r 0.0 max. 123  87 492 120 160 -55 to + 175 20 0.66 see fig. 14, 15 , 22a, 22b a c 300 111 99 10lbf  in (1.1n  m) mj static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v . 0.0 . . 3.9 ??? m v gs(th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current ??? ??? 1.0 ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 1.6 ??? v gs = 6.0v, i d = 35a v ds = v gs , i d = 100 a conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 70a a na v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v   calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 120a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (refer to an-1140)  repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.046mh,r g = 50 , i as = 70a, v gs =10v.  i sd 70a, di/dt 1174a/ s, v dd v (br)dss , t j 175c.  pulse width 400 s; duty cycle 2%.   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . r  is measured at t j approximately 90c.
this value determined from sample failure population, starting t j = 25c, l=0.046mh, r g = 50 , i as = 70a, v gs =10v.

 www.irf.com 3 s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 269 ??? ??? s q g total gate charge ??? 62 93 q gs gate-to-source charge ??? 16 ??? q gd gate-to-drain ("miller") charge ??? 20 ??? q sync total gate charge sync. (q g - q gd ) ??? 42 ??? t d(on) turn-on delay time ??? 11 ??? t r rise time ???34??? t d(off) turn-off delay time ??? 33 ??? t f fall time ??? 23 ??? c iss input capacitance ??? 3183 ??? c oss output capacitance ??? 475 ??? c rss reverse transfer capacitance ??? 331 ??? c oss eff. (er) effective output capacitance (energy related) ??? 596 ??? c oss eff. (tr) effective output capacitance (time related) ??? 688 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current (body diode) i sm pulsed source current (body diode)  v sd diode forward voltage ??? 0.9 1.3 v dv/dt peak diode recovery  ??? 7.6 ??? v/ns t rr reverse recovery time ??? 22 ??? t j = 25c v r = 34v, ???24??? t j = 125c i f = 70a q rr reverse recovery charge ??? 15 ??? t j = 25c di/dt = 100a/ s  ???15??? t j = 125c i rrm reverse recovery current ??? 1.0 ??? a t j = 25c t j = 175c, i s = 70a, v ds = 40v conditions v ds = 10v, i d = 70a i d = 70a v ds =20v v gs = 10v  v dd = 20v i d = 70a, v ds =0v, v gs = 10v t j = 25c, i s = 70a, v gs = 0v  integral reverse p-n junction diode. mosfet symbol showing the i d = 30a r g = 2.7 conditions v gs = 10v  v gs = 0v nc ns pf v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 32v  , see fig. 11 v gs = 0v, v ds = 0v to 32v  nc 120  492 ??? ??? ??? ??? a ns

 4 www.irf.com fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width -60 -20 20 60 100 140 180 t j , junction temperature (c) 0.6 1.0 1.4 1.8 2.2 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 70a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1020304050607080 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 70a

 www.irf.com 5 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -20 20 60 100 140 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 50 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5.0ma 0 100 200 300 400 500 i d , drain current (a) 0.0 5.0 10.0 15.0 20.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) vgs = 5.5v vgs = 6.0v vgs = 7.0v vgs = 8.0v vgs = 10v 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 e n e r g y ( j ) v ds = 0v to 32v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 10msec 1msec operation in this area limited by r ds (on) 100 sec dc package limited

 6 www.irf.com fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 22a, 22b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart = 25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 70a

 www.irf.com 7       fig 16. threshold voltage vs. temperature    !"   
        !"   -75 -25 25 75 125 175 225 t j , temperature ( c ) 0.5 1.5 2.5 3.5 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) id = 100 a id = 250 a id = 1.0ma id = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 1 2 3 4 5 6 i r r m ( a ) i f = 46a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 1 2 3 4 5 i r r m ( a ) i f = 70a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 10 20 30 40 50 60 70 q r r ( n c ) i f = 46a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 10 20 30 40 50 60 q r r ( n c ) i f = 70a v r = 34v t j = 25c t j = 125c

 8 www.irf.com fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. #   for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period $    
     $ + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&# 

     d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %         + -    

 www.irf.com 9 
     
     

 

 
  international part number rectifier lot code as s e mb l y logo year 0 = 2000 dat e code we e k 19 line c lot code 1789 e xample : t his is an irf 1010 note: "p" in assembly line position i ndi cates "l ead - f r ee" in the assembly line "c" ass e mble d on ww 19, 2000 to-220ab packages are not recommended for surface mount application. n/a (per je de c j-s t d-020d ??? ) rohs compliant (per jedec jesd47f ??? guidelines) yes qualification information ? industrial ?? qualification level to-220ab moisture sensitivity level %& '(')'*+(, !,+++'-'(  %%."!/'"- ((!!!!/-  ) '''!'-,!,+++'-+! %%% ('011!-' note: for the most current drawing please refer to ir website at http://www.irf.com/package/ data and specifications subject to change without notice. ir world headquarters: 101n sepulveda., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2012 revision history date comment 9/11/2012 added package limit on pg1,2 and updated fig2 , fig10


▲Up To Search▲   

 
Price & Availability of IRFB7446PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X